By ESA & NASA 6:18 pm PST

The largest survey of nearby galaxies in James Webb Space Telescope (Webb) first year of science operations is being carried out by the Physics at High Angular resolution in Nearby Galaxies (PHANGS) collaboration, involving more than 100 researchers from around the globe. The Webb observations are led by Janice Lee, Gemini Observatory chief scientist at the US National Science Foundation’s NOIRLab and an affiliate astronomer at the University of Arizona in Tucson.

The team is studying a diverse sample of 19 spiral galaxies, and in Webb’s first few months of science operations, observations have been made of five of those targets — M74, NGC 7496, IC 5332, NGC 1365, and NGC 1433. The results are already astounding astronomers.

At the centre of NGC 7496, a barred spiral galaxy, is an active galactic nucleus (AGN). An AGN is a supermassive black hole that is emitting jets and winds. The AGN glows brightly at the centre of this Webb image. Additionally, Webb’s extreme sensitivity also picks up various background galaxies,far distant from NGC 7496, which appear green or red in some instances. NGC 7496 lies over 24 million light-years away from Earth in the constellation Grus.In this image of NGC 7496, blue, green, and red were assigned to Webb’s MIRI data at 7.7, 10 and 11.3, and 21 microns (Photo: NASA, ESA, CSA y J. Lee ( NOIRLab ), A. Pagano ( STScI )

The images from Webb’s Mid-Infrared Instrument (MIRI) reveal the presence of a network of highly structured features within these galaxies — glowing cavities of dust and huge cavernous bubbles of gas that line the spiral arms. In some regions of the nearby galaxies observed, this web of features appears built from both individual and overlapping shells and bubbles where young stars are releasing energy.

The high-resolution imaging needed to study these structures has long evaded astronomers — that is, until Webb came into the picture. Webb’s powerful infrared capabilities can pierce through the dust to connect the missing pieces of the puzzle. For example, specific wavelengths observable by MIRI (7.7 and 11.3 microns) are sensitive to emission from polycyclic aromatic hydrocarbons, which play a crucial role in the formation of stars and planets. These molecules were detected by Webb in the first observations by the PHANGS programme.

Studying these interactions at the finest scales can help provide insights into the larger picture of how galaxies have evolved over time.